4ti2

A software package for algebraic, geometric and combinatorial problems on linear spaces

Raymond Hemmecke

University of Magdeburg, Germany

Version 1.3 now available from www.4ti2.de!

IMA, October 25, 2006

What is 4ti2?

Algorithmic mathematics

- Extreme rays and Hilbert bases of polyhedral cones
- Circuits and Graver bases
- Gröbner bases and generating sets of lattice ideals
- (Atomic fibers)

Software

Demonstration of practical usefulness of algorithms

Tool for proving/disproving mathematical conjectures

- ullet Full Markov basis for 4 imes 4 imes 4 tables (Sullivant's Challenge)
- Counter-example to normality of a certain semi-graphoid (Studený's conjecture)

Who is 4ti2?

4ti2 team/contributors of version 1.3

- University of Magdeburg, Germany
 - Raymond Hemmecke
 - Matthias Köppe
 - Matthias Walter
- CORE, Université catholique de Louvain, Belgium
 - Peter Malkin
- RISC, University of Linz, Austria
 - Ralf Hemmecke

In preparation: Computation of atomic fibers

- University of Magdeburg, Germany
 - Elke Eisenschmidt

Let us start with linear systems

Solving linear systems

Problem

$$\begin{array}{rcl}
Ax & = & a \\
Bx & \leq & b \\
x & \in & \mathbf{R}^n
\end{array}$$

Weyl's theorem

For every rational polyhedron P there exist finite sets $V,E\subseteq \mathbf{Q}^n$ such that

$$P = \operatorname{conv}(V) + \operatorname{cone}(E)$$
.

Description of all real solutions

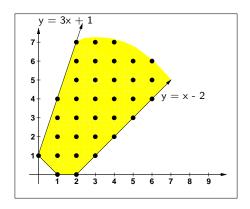
$$x = \sum \alpha_i x_{\mathsf{inhom},i} + \sum \beta_j x_{\mathsf{hom},j}, \quad \alpha_i, \beta_j \ge 0, \sum \alpha_i = 1$$

Goal

Find the finite sets V and E of *minimal* inhomogeneous and homogeneous solutions.

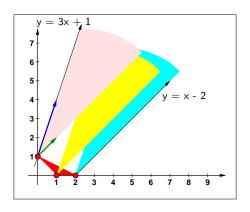
Example

$$\begin{array}{cccc} x-y & \leq & 2 \\ -3x+y & \leq & 1 \\ x+y & \geq & 1 \\ x,y & \geq & 0 \\ x,y & \in & \mathbf{R} \end{array}$$



Solution over R

$$\mathsf{conv}\left(\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right),\left(\begin{smallmatrix}2\\0\end{smallmatrix}\right),\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\right) + \mathsf{cone}\left(\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right),\left(\begin{smallmatrix}1\\3\end{smallmatrix}\right)\right)$$



The homogeneous case

Extreme rays

The extreme rays E of a pointed rational polyhedral cone

$$C = \{x \in \mathbf{R}^n : Ax \le 0\}$$

minimally generate the cone C, that is

$$C = cone(E)$$
.

Thus, every point $z \in C$ can be written as $z = \sum \alpha_i h_i$ with $h_i \in E$ and $\alpha_i \in \mathbf{R}_+$.

The inhomogeneous case

Given system

$$P = \{x \in \mathbf{R}^n : Ax \le b\}$$

Homogenized system

$$C = \{(x, u) \in \mathbf{R}^n \times \mathbf{R}_+ : Ax - bu \le 0\}$$

Fact

Minimal homogeneous solutions correspond to extreme rays with $u=0. \rightarrow E$

Minimal inhomogeneous solutions correspond to extreme rays with $u=1. \rightarrow V$

The double description method (Motzkin, Raiffa et al., 1953)

Problem

Compute the extreme rays of the cone $C = \{x : Ax \le 0\}$.

Idea of double description method

$$C_j = \{x : a_i^\mathsf{T} x \le 0 : 1 \le i \le j\} = \{x : A^{(j)} x \le 0\}.$$

Use extreme rays of C_j to compute extreme rays of C_{j+1} recursively.

Facts

- ullet Every extreme ray of \mathcal{C}_{j+1} is a conic combination of two adjacent extreme rays of \mathcal{C}_{j} .
- ullet Two extreme rays r_1 , r_2 are adjacent if there is no extreme ray r of C_j with

$$\overline{\operatorname{supp}}(A^{(j)}r)\subseteq\overline{\operatorname{supp}}(A^{(j)}r_1)\cap\overline{\operatorname{supp}}(A^{(j)}r_2).$$

• This results in a simple completion algorithm for rays $(C_j) \rightarrow \text{rays}(C_{j+1})$.

A special case

Problem

Compute the extreme rays of the cone $C = \{x : Ax = 0, x \ge 0\}$.

Solution

- Compute generating set for linear space $\{x : Ax = 0\}$.
- Apply idea of double description method iteratively to $x_1 \geq 0, \dots, x_n \geq 0$.

Project-and-lift idea

Lifting of support minimal elements

$$Proj_{I}(\{x: Ax = 0\}) \cap \mathbf{R}'_{+} \to Proj_{I \cup \{i\}}(\{x: Ax = 0\}) \cap \mathbf{R}'_{+}^{I \cup \{i\}}.$$

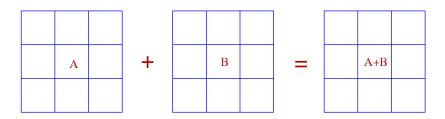
Fact

Same idea works for support minimal elements in $\{x : Ax = 0\}$, the *circuits* of A.

→ output-polynomial time algorithm

Computational experiments I

Magic squares



The set of magic squares forms a pointed rational polyhedral cone.

Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Extreme rays for magic 6×6 squares

- 97,548 extreme rays
- 43 seconds (with 4ti2)
- 572 seconds (with 1rs)
- 1,800 seconds (with cdd)

Extreme rays for magic 7×7 squares

- 5,920,184 extreme rays
- 31.74 hours (with lrs)
- 49.40 hours (with 4ti2)

Circuits for example posed by Beerenwinkel

- 772,731 circuits
- 519 seconds (with 4ti2)

Let us continue with the integer situation

Solving integer linear systems

Problem

$$\begin{array}{rcl}
Ax & = & a \\
Bx & \leq & b \\
x & \in & \mathbf{Z}^n
\end{array}$$

Integer analogue to Weyl's theorem

For every rational polyhedron P there exist finite sets $V, E \subseteq \mathbf{Q}^n$ such that

$$P \cap \mathbf{Z}^n = (\operatorname{conv}(V) \cap \mathbf{Z}^n) + (\operatorname{cone}(E) \cap \mathbf{Z}^n).$$

Description of all integer solutions

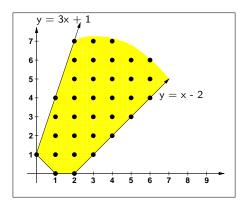
$$x = x_{\mathsf{inhom},i} + \sum \beta_j x_{\mathsf{hom},j}, \quad \beta_j \ge 0$$

Goal

Find the finite sets V and E of minimal inhomogeneous and homogeneous integer solutions.

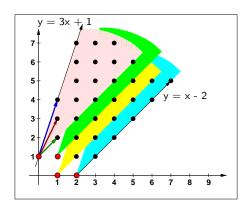
Example

$$\begin{array}{cccc} x - y & \leq & 2 \\ -3x + y & \leq & 1 \\ x + y & \geq & 1 \\ x, y & \geq & 0 \\ x, y & \in & \mathbf{Z} \end{array}$$



Solution over **Z**

$$\{\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right),\left(\begin{smallmatrix}2\\0\end{smallmatrix}\right),\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right),\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\} + \mathsf{monoid}\left(\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right),\left(\begin{smallmatrix}1\\2\end{smallmatrix}\right),\left(\begin{smallmatrix}1\\3\end{smallmatrix}\right)\right)$$



The homogeneous case

Hilbert basis

A finite set $H \subseteq C \cap \mathbf{Z}^n$ is a *Hilbert basis* of C if

$$C \cap \mathbf{Z}^n = monoid(H)$$
.

Thus, every point $z \in C \cap \mathbf{Z}^n$ can be written as $z = \sum \alpha_i h_i$ with $h_i \in H$ and $\alpha_i \in \mathbf{Z}_+$.

The inhomogeneous case

Given system

$$P = \{x \in \mathbf{R}^n : Ax \le b\}$$

Homogenized system

$$C = \{(x, u) \in \mathbf{R}^n \times \mathbf{R}_+ : Ax - bu \le 0\}$$

Fact

Minimal homogeneous integer solutions correspond to Hilbert basis elements with u=0. \rightarrow F

Minimal inhomogeneous integer solutions correspond to Hilbert basis elements with $u=1. \rightarrow V$

Normality of semi-groups and the set of holes

Normality problem

Let $A \subseteq \mathbf{Z}^{d \times n}$ such that $lattice(A) = \mathbf{Z}^d$. Decide whether $monoid(A) = cone(A) \cap \mathbf{Z}^d$.

Solution

If monoid(A) has *holes*, there must be one in hilbert(cone(A)).

Harder problem: find all holes

If $monoid(A) \subsetneq cone(A) \cap \mathbf{Z}^d$, find a finite description for $cone(A) \cap \mathbf{Z}^d \setminus monoid(A)$.

→ H.+Takemura+Yoshida: "Computing holes in semi-groups"

"Integer double description method" (Contejean, Devie, ...)

Problem

Compute the Hilbert basis of the cone $C = \{x : Ax \le 0\}$.

ldea

$$C_j = \{x : a_i^\mathsf{T} x \le 0 : 1 \le i \le j\} = \{x : A^{(j)} x \le 0\}.$$

- Use Hilbert basis of C_j to compute Hilbert basis of C_{j+1} recursively.
- ullet This leads again to a simple completion algorithm for hilbert (C_j) o hilbert (C_{j+1}) .

Special case (H., 2002)

Idea gives again a project-and-lift algorithm for hilbert($\{x : Ax = 0, x \ge 0\}$).

Graver basis of A (H., 2002)

Algorithm can be adapted to compute graver(A) := \bigcup_j hilbert $\{x \in \mathcal{O}_j : Ax = 0\}$).

 \rightarrow output-polynomial time algorithm

Computational experiments II

Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Hilbert basis for magic 6×6 squares

- 522,347 elements
- ca. 10 days (with 4ti2)

Homogeneous primitive partition identities

• Example:

$$1+1+4=2+2+2$$

•

$$\mathsf{graver} \left(\begin{array}{ccccc} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 3 & \dots & 20 \end{array} \right)$$

- 1,254,767 elements
- 5.25 days (with 4ti2)

Let us conclude with lattice ideals

Sampling in statistics

Problem

- In statistics, we wish to test using a sample of data whether a population has a specific distribution.
- For example, we may want to know if eye colour is independent of hair colour.

	Black	Brown	Red	Blonde	Total
Brown	68	119	26	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Total	103	257	57	111	528

- We want to know if the sample data is statistically significantly different from its expected values.
- Significantly different is defined in comparison to all other possible contingency tables with the same column and row sums.

Sampling in statistics

However

- There may be too many other tables to enumerate them all.
- Thus, we sample them using basic moves to set up a Markov chain.
- The set of basic moves is called a Markov basis.

Markov bases

- We sample in the fiber $\{z : Az = b, z \in \mathbf{Z}_+^n\}$ for fixed b.
- Moves are integer solutions to Ax = 0.
- $M \subseteq \ker_{\mathbf{Z}}(A)$ is called a Markov basis of A if it connects $\{z : Az = b, z \in \mathbf{Z}_+^n\}$ for every b.

Fact (Diaconis+Sturmfels)

M is a Markov basis of A if and only if $\{x^{m^+} - x^{m^-} : m \in M\}$ is a generating set of

$$I_A := \langle x^u - x^v : Au = Av, u, v \in \mathbf{Z}_+^n \rangle.$$

Test sets in integer programming

Problem

$$\min\{c^{\mathsf{T}}z: Az = b, z \in \mathbf{Z}_+^n\} \quad (*)$$

Augmentation algorithm

- Find a feasible solution $z_0 \in \mathbf{Z}^n$ to $Az = b, z \ge 0$.
- While there is an improving direction $t \in \mathbf{Z}^n$, set $z_0 := z_0 t$.

Test sets

A set $T \subseteq \mathbf{Z}^n$ is called a *test set* for (*) if

- for every right-hand side b and
- for every non-optimal feasible solution z_0 to (*)
- there exists some improving direction $t \in T$.

Toric Gröbner bases constitute test sets for c fixed, b variable (Conti+Traverso)

$$I_A := \langle x^u - x^v : Au = Av, u, v \in \mathbf{Z}_+^n \rangle$$

 $x^u \succ x^v \Leftrightarrow (c^{\mathsf{T}}u > c^{\mathsf{T}}v) \text{ or } (c^{\mathsf{T}}u = c^{\mathsf{T}}v \text{ and } u \succ v)$

Universal test sets

Universal test sets

A set $T \subseteq \mathbf{Z}^n$ is called a *universal test set* if T is a test set for (*) for every b and c.

Graver bases are finite universal test sets (Graver)

Using Graver basis directions, only *polynomially many* augmentation steps are necessary. (Schulz+Weismantel)

Finite test sets for certain convex objectives (Murota+Saito+Weismantel, H.)

There are finite test sets also for problems

$$\min\left\{\sum_{i=1}^s f_i(c_i^\intercal z + c_{i,0}) + c^\intercal z : Az = b, z \in \mathbf{Z}_+^n\right\}$$

for any collection of convex functions $f_i : \mathbf{R} \to \mathbf{R}$.

Toric Gröbner bases and Markov bases

Main problem

Find a generating set for I_A . \rightarrow Markov basis

A little history

• 1991: Conti+Traverso: Eliminate y from

$$\{y_1-x^{A_{.1}},\ldots,y_n-x^{A_{.n}}\}.$$

• 1995: Hoşten+Sturmfels: Saturation algorithm, F is a lattice basis of ker(A)

$$I_A = \langle x^{u^+} - x^{u^-} : u \in F \rangle : (x_1 x_2 \dots x_n)^{\infty}$$

- 1999: Bigatti+LaScala+Robbiano: implementation of saturation in CoCoA
- 2005: Malkin: Project-and-lift algorithm and implementation in 4ti2

Project-and-lift algorithm (Malkin)

Idea

1 Choose $J \subseteq \{1, \ldots, n\}$ and compute generating set for

$$I_{A,J} := \langle x^u - x^v : Au = Av, u, v \in \mathbf{Z}_+^n \rangle \subseteq k(x_{\overline{J}})[x_J]$$

for example via the saturation algorithm.

- **②** For $i \in \overline{J}$, compute a certain degrevlex Gröbner basis for $I_{A,J}$, where the term ordering depends on i-th component.
- **9** Translate Gröbner basis into polynomial ring $k\left(x_{\overline{J}\setminus\{i\}}\right)\left[x_{J\cup\{i\}}\right]$ and repeat.

Nice fact implied by special term ordering

The Gröbner basis of $I_{A,J}$ in $k(x_{\overline{J}})[x_J]$ lifts to a Gröbner basis in $k\left(x_{\overline{J}\setminus\{i\}}\right)[x_{J\cup\{i\}}]$.

Advantages

Size of Gröbner bases

Intermediate Gröbner bases increase only slowly in size.

Critical-pair criteria

more efficient → cancelation criterion

Truncated generating sets of lattices (Malkin, 2006)

Truncation (Thomas+Weismantel) can be combined with project-and-lift idea.

Computational experiments III

Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Markov basis for $4 \times 4 \times 4$ table (Sullivant's challenge)

- 148,654 elements
- ca. 2.5 days (with 4ti2)

Markov bases of phylogenetic trees (Eriksson)

- Successful computations with 2,048 variables.
- ca. 15 minutes (with 4ti2)

Normality of semi-group (Studený's question)

- 32 × 80 matrix
- 4ti2 was used to find a non-squarefree indispensible Markov basis element.
- This move was translated into a hole of the semi-group.
- 4ti2 was used to give a computational proof of hole-property.

The end

www.4ti2.de

Thank you for your attention!