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What is 4ti2?

Algorithmic mathematics

@ Extreme rays and Hilbert bases of polyhedral cones

@ Circuits and Graver bases

Grobner bases and generating sets of lattice ideals
(Atomic fibers)

Demonstration of practical usefulness of algorithms

Tool for proving/disproving mathematical conjectures

o Full Markov basis for 4 x 4 X 4 tables (Sullivant’s Challenge)

o Counter-example to normality of a certain semi-graphoid (Studeny’s conjecture)
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Who is 4ti27?

4ti2 team/contributors of version 1.3

@ University of Magdeburg, Germany

o Raymond Hemmecke
o Matthias Képpe
o Matthias Walter

o CORE, Université catholique de Louvain, Belgium
o Peter Malkin

@ RISC, University of Linz, Austria
o Ralf Hemmecke

In preparation: Computation of atomic fibers

@ University of Magdeburg, Germany
o Elke Eisenschmidt
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Let us start with linear systems
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Solving linear systems

Problem

Weyl's theorem

For every rational polyhedron P there exist finite sets V, E C Q" such that

P = conv(V) + cone(E).

| \

Description of all real solutions

X = Zai Xinhom,i + Zﬂj Xhom,j ai,ﬂj > Oazai =

A,

Find the finite sets V and E of minimal inhomogeneous and homogeneous solutions.
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x—y < 2
-3x+y < 1
x+y > 1
x,y > 0
x,y € R
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Solution over R

conv ((5),(5),(1)) + cone((1),(3))

y=3x+1
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The homogeneous case

The extreme rays E of a pointed rational polyhedral cone
C={xeR": Ax <0}
minimally generate the cone C, that is

C = cone(E).

Thus, every point z € C can be written as z = ), «; hj with h; € E and «; € R;.
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The inhomogeneous case

P={x€eR": Ax < b}

Homogenized system

C ={(x,u) € R" x Ry : Ax — bu < 0}

Minimal homogeneous solutions correspond to extreme rays with u = 0. — E

Minimal inhomogeneous solutions correspond to extreme rays with u =1. — V
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The double description method (Motzkin, Raiffa et al., 1953)

Problem

Compute the extreme rays of the cone C = {x : Ax < 0}.

Idea of double description method

G={x:alx<0:1<i<j}={x: A% <0}

Use extreme rays of C; to compute extreme rays of Cji1 recursively.

o Every extreme ray of Cj;1 is a conic combination of two adjacent extreme rays of C;.

@ Two extreme rays r1, r» are adjacent if there is no extreme ray r of C; with

supp(AYr) C supp(AYn) Nsupp(AYr).

@ This results in a simple completion algorithm for rays(C;) — rays(Cjt1).
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A special case

Compute the extreme rays of the cone C = {x : Ax =0,x > 0}.

o Compute generating set for linear space {x : Ax = 0}.

@ Apply idea of double description method iteratively to x; > 0,...,x, > 0.

v

Project-and-lift idea

Lifting of support minimal elements

Proj,({x : Ax=0})NR, — Proj,i ({x : Ax =0}) N Riru{i}.

Same idea works for support minimal elements in {x : Ax = 0}, the circuits of A.

— output-polynomial time algorithm
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Computational experiments |
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A + B o A+B

The set of magic squares forms a pointed rational polyhedral cone.
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Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Extreme rays for magic 6 x 6 squares
@ 97,548 extreme rays
@ 43 seconds (with 4ti2)
@ 572 seconds (with 1rs)
@ 1,800 seconds (with cdd)

Extreme rays for magic 7 x 7 squares

@ 5,920,184 extreme rays
@ 31.74 hours (with 1rs)
@ 49.40 hours (with 4ti2)

Circuits for example posed by Beerenwinkel
@ 772,731 circuits

@ 519 seconds (with 4ti2)
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Let us continue with the integer situation
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Solving integer linear systems

Problem
Ax = a
Bx < b
x € 2

Integer analogue to Weyl's theorem
For every rational polyhedron P there exist finite sets V, E C Q" such that

PNZ" = (conv(V)NZ") + (cone(E)NZ").

i

Description of all integer solutions

= E) 3J? -
X Xinhom,i + Zﬁj Xhom, j ﬁj >0

Find the finite sets V and E of minimal inhomogeneous and homogeneous integer
solutions.
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x—y < 2
-3x+y < 1
x+ty 2> 1
x,y > 0
x,y € Z
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Solution over Z

{(5),(3).(2), (1)} + monoid (1), (2)(5))

y=3x+1
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The homogeneous case

Hilbert basis
A finite set H C C N 2" is a Hilbert basis of C if

CNZ" = monoid(H).

Thus, every point z € C N Z" can be written as z = ) a; h; with h; € H and «; € Z,,..
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The inhomogeneous case

P={x€eR": Ax < b}

Homogenized system

C ={(x,u) € R" x Ry : Ax — bu < 0}

Minimal homogeneous integer solutions correspond to Hilbert basis elements with u = 0.
— E

Minimal inhomogeneous integer solutions correspond to Hilbert basis elements with
u=1 —-V
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Normality of semi-groups and the set of holes

Normality problem

Let A C Z9%" such that lattice(A) = Z¢. Decide whether monoid(A) = cone(A) N Z9.

If monoid(A) has holes, there must be one in hilbert(cone(A)).

Harder problem: find all holes

If monoid(A) € cone(A) N Z?, find a finite description for cone(A) N Z% \ monoid(A).

— H.+Takemura+Yoshida: “Computing holes in semi-groups”
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“Integer double description method” (Contejean, Devie, ...

Problem

Compute the Hilbert basis of the cone C = {x : Ax < 0}.

G={x:alx<0:1<i<j}={x:AVx<0}.

@ Use Hilbert basis of C; to compute Hilbert basis of Cjy1 recursively.

@ This leads again to a simple completion algorithm for hilbert(C;) — hilbert(Cj+1).

Special case (H., 2002)

Idea gives again a project-and-lift algorithm for hilbert({x : Ax = 0,x > 0}).

Graver basis of A (H., 2002)

Algorithm can be adapted to compute graver(A) := J; hilbert{x € O; : Ax = 0}).

— output-polynomial time algorithm
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Computational experiments ||

Raymond Hemmecke (Magdeburg, Germany)



Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Hilbert basis for magic 6 x 6 squares
@ 522,347 elements
@ ca. 10 days (with 4ti2)

Homogeneous primitive partition identities

@ Example:
1414 4=2+2+2

ve 1 1 1 ... 1
graveri s 2 3 ... 20
@ 1,254,767 elements
@ 5.25 days (with 4ti2)
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Let us conclude with lattice ideals
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Sampling in statistics

@ In statistics, we wish to test using a sample of data whether a population has a
specific distribution.

@ For example, we may want to know if eye colour is independent of hair colour.
\ || Black | Brown | Red | Blonde || Total |

Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
| Total || 103 | 257 [ 57 | 111 || 528 |

@ We want to know if the sample data is statistically significantly different from its
expected values.

o Significantly different is defined in comparison to all other possible contingency
tables with the same column and row sums.
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Sampling in statistics

However

@ There may be too many other tables to enumerate them all.

@ Thus, we sample them using basic moves to set up a Markov chain.

@ The set of basic moves is called a Markov basis. J

o We sample in the fiber {z : Az = b,z € Z'| } for fixed b.
@ Moves are integer solutions to Ax = 0.

@ M C kerz(A) is called a Markov basis of A if it connects {z : Az = b,z € Z| } for
every b.

N,

Fact (Diaconis+Sturmfels)

M is a Markov basis of A if and only if {x’"+ —x™ :m € M} is a generating set of

la:=(x"—x": Au=Av,u,v eZ}).

v
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Test sets in integer programming

min{cTz: Az=b,z€ Z} (%)

Augmentation algorithm

@ Find a feasible solution zp € Z" to Az = b,z > 0.

o While there is an improving direction t € Z", set z := zp — t.

Test sets
Aset T C Z" is called a test set for (*) if
o for every right-hand side b and

o for every non-optimal feasible solution z to (*)

o there exists some improving direction t € T.

Toric Grobner bases constitute test sets for ¢ fixed, b variable (Conti-+Traverso)

Iy = (x" —x": Au= Av,u,v € Z})

x'=x"< (c"u>c"v)or (cCTu=c"vand u > v)
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Universal test sets

Universal test sets

Aset T C Z" is called a universal test set if T is a test set for (*) for every b and c.

Graver bases are finite universal test sets (Graver)

Using Graver basis directions, only polynomially many augmentation steps are necessary.
(Schulz+Weismantel)

Finite test sets for certain convex objectives (Murota-+Saito+Weismantel, H.)

There are finite test sets also for problems

min {Z fi(cTz+ cio)+c'z: Az=b,z € Zi}

i=1

for any collection of convex functions f; : R — R.
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Toric Grobner bases and Markov bases

—

Main problem

Find a generating set for [a. — Markov basis

A little history
@ 1991: Conti+Traverso: Eliminate y from

1

{rn—x*, .y — x*)
@ 1995: Hosten+Sturmfels: Saturation algorithm, F is a lattice basis of ker(A)

+

lh = (X" —xY

cu€eF): (axe...x))™

@ 1999: Bigatti+LaScala+Robbiano: implementation of saturation in CoCoA

@ 2005: Malkin: Project-and-lift algorithm and implementation in 4ti2
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Project-and-lift algorithm (Malkin)

Q@ Choose J C {1,...,n} and compute generating set for
Iag = (x"—x": Au= Av,u,v € Z) C k(x3)[xJ]

for example via the saturation algorithm.

@ For i € J, compute a certain degrevlex Grobner basis for /4 j, where the term
ordering depends on i-th component.

@ Translate Grobner basis into polynomial ring k (Xj\{,}) [xsugiy] and repeat.

Nice fact implied by special term ordering

The Grébner basis of I, in k(x7)[x)] lifts to a Grébner basis in k (Xj\{;}) [xsu(iy]-
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Size of Grobner bases

Intermediate Grobner bases increase only slowly in size.

110000 S AT

5000

o [_P&L

Critical-pair criteria

more efficient — cancelation criterion

Truncated generating sets of lattices (Malkin, 2006)

Truncation (Thomas+Weismantel) can be combined with project-and-lift idea.
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Computational experiments |ll
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Computational experiments on Sun Fire V890 Ultra Sparc IV, 1200 MHz

Markov basis for 4 x 4 x 4 table (Sullivant's challenge)

@ 148,654 elements
@ ca. 2.5 days (with 4ti2)

Markov bases of phylogenetic trees (Eriksson)

@ Successful computations with 2,048 variables.
@ ca. 15 minutes (with 4ti2)

Normality of semi-group (Studeny's question)

@ 32 x 80 matrix
@ 4ti2 was used to find a non-squarefree indispensible Markov basis element.
@ This move was translated into a hole of the semi-group.

@ 4ti2 was used to give a computational proof of hole-property.
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www.4ti2.de

Thank you for your attention!
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